Consensus statement on exploring the Nexus between nutrition, brain health and dementia prevention | Nutrition & Metabolism

0
Consensus statement on exploring the Nexus between nutrition, brain health and dementia prevention | Nutrition & Metabolism
  • Yassine HN, et al. Nutrition state of science and dementia prevention: recommendations of the nutrition for dementia prevention working group. Lancet Healthy Longev. 2022;3:e501–12. https://doi.org/10.1016/s2666-7568(22)00120-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Livingston G, et al. Dementia prevention, intervention, and care: 2024 report of the lancet standing commission. Lancet. 2024;404:572–628. https://doi.org/10.1016/S0140-6736(24)01296-0.

    Article 
    PubMed 

    Google Scholar 

  • Zimmerman B, Rypma B, Gratton G, Fabiani M. Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology. 2021;58:e13796. https://doi.org/10.1111/psyp.13796.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zamroziewicz MK, Barbey AK. Nutritional cognitive neuroscience: innovations for healthy brain aging. Front Neurosci. 2016;10:240. https://doi.org/10.3389/fnins.2016.00240.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gómez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci. 2008;9:568–78. https://doi.org/10.1038/nrn2421.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar S, Malviya R, Sundram S. Nutritional neurology: unraveling cellular mechanisms of natural supplements in brain health. Hum Nutr Metabolism. 2024;35:200232. https://doi.org/10.1016/j.hnm.2023.200232.

    Article 
    CAS 

    Google Scholar 

  • Puri S, Shaheen M, Grover B. Nutrition and cognitive health: A life course approach. Front Public Health. 2023;11:1023907. https://doi.org/10.3389/fpubh.2023.1023907.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siervo M, Shannon OM, Llewellyn DJ, Stephan BC, Fontana L. Mediterranean diet and cognitive function: from methodology to mechanisms of action. Free Radic Biol Med. 2021;176:105–17. https://doi.org/10.1016/j.freeradbiomed.2021.09.018.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Román GC, Jackson RE, Gadhia R, Román AN, Reis J. Mediterranean diet: the role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, Cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and alzheimer disease. Rev Neurol (Paris). 2019;175:724–41. https://doi.org/10.1016/j.neurol.2019.08.005.

    Article 
    PubMed 

    Google Scholar 

  • Johnstone AM, Donaldson AIC, Scott KP, Myint PK. The ageing Gut–Brain study: exploring the role of the gut microbiota in dementia. Nutr Bull. 2019;44:145–53. https://doi.org/10.1111/nbu.12378.

    Article 

    Google Scholar 

  • La Torre D, Verbeke K, Dalile B. Dietary fibre and the gut–brain axis: microbiota-dependent and independent mechanisms of action. Gut Microbiome. 2021;2:e3. https://doi.org/10.1017/gmb.2021.3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosenberg A, Mangialasche F, Ngandu T, Solomon A, Kivipelto M. Multidomain interventions to prevent cognitive impairment, alzheimer’s disease, and dementia: from FINGER to World-Wide FINGERS. J Prev Alzheimers Dis. 2020;7:29–36. https://doi.org/10.14283/jpad.2019.41.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Flanagan E, et al. Nutrition and the ageing brain: moving towards clinical applications. Ageing Res Rev. 2020;62:101079. https://doi.org/10.1016/j.arr.2020.101079.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cortes-Canteli M, Iadecola C. Alzheimer’s disease and vascular aging: JACC focus seminar. J Am Coll Cardiol. 2020;75:942–51. https://doi.org/10.1016/j.jacc.2019.10.062.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Madsen LS, et al. Capillary dysfunction correlates with cortical amyloid load in early alzheimer’s disease. Neurobiol Aging. 2023;123:1–9. https://doi.org/10.1016/j.neurobiolaging.2022.12.006.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muth A-K, Park SQ. The impact of dietary macronutrient intake on cognitive function and the brain. Clin Nutr. 2021;40:3999–4010. https://doi.org/10.1016/j.clnu.2021.04.043.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Welty FK. Omega-3 fatty acids and cognitive function. Curr Opin Lipidol. 2023;34:12–21. https://doi.org/10.1097/MOL.0000000000000862.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grosso G, et al. Anti-Inflammatory nutrients and Obesity-Associated Metabolic-Inflammation: state of the Art and future direction. Nutrients. 2022;14. https://doi.org/10.3390/nu14061137.

  • Simonetto M, Infante M, Sacco RL, Rundek T, Della-Morte DA. Novel Anti-Inflammatory Role of Omega-3 PUFAs in Prevention and Treatment of Atherosclerosis and Vascular Cognitive Impairment and Dementia. Nutrients 11(2019). https://doi.org/10.3390/nu11102279

  • Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci. 2018;21:1318–31. https://doi.org/10.1038/s41593-018-0234-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cutuli D. Functional and structural benefits induced by Omega-3 polyunsaturated fatty acids during aging. Curr Neuropharmacol. 2017;15:534–42. https://doi.org/10.2174/1570159X14666160614091311.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • von Schacky C. Importance of EPA and DHA blood levels in brain structure and function. Nutrients. 2021;13. https://doi.org/10.3390/nu13041074.

  • Takechi R, Galloway S, Pallebage-Gamarallage MMS, Lam V, Mamo JCL. Dietary fats, cerebrovasculature integrity and alzheimer’s disease risk. Prog Lipid Res. 2010;49:159–70. https://doi.org/10.1016/j.plipres.2009.10.004.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Choi S-W, Friso S. Modulation of DNA methylation by one-carbon metabolism: a milestone for healthy aging. Nutr Res Pract. 2023;17:597–615. https://doi.org/10.4162/nrp.2023.17.4.597.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balmik AA, Chinnathambi S. Methylation as a key regulator of Tau aggregation and neuronal health in alzheimer’s disease. Cell Communication Signal. 2021;19:51. https://doi.org/10.1186/s12964-021-00732-z.

    Article 
    CAS 

    Google Scholar 

  • Smith AD, Refsum H, Homocysteine B. Vitamins, and cognitive impairment. Annu Rev Nutr. 2016;36:211–39. https://doi.org/10.1146/annurev-nutr-071715-050947.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith AD, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS ONE. 2010;5:e12244. https://doi.org/10.1371/journal.pone.0012244.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu X, Ma YN, Xia Y. Association between abnormal lipid metabolism and alzheimer’s disease: new research has revealed significant findings on the APOE4 genotype in microglia. Biosci Trends. 2024;18:195–7. https://doi.org/10.5582/bst.2024.01092.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen Y, Strickland MR, Soranno A, Holtzman DM, Apolipoprotein E. Structural insights and links to alzheimer disease pathogenesis. Neuron. 2021;109:205–21. https://doi.org/10.1016/j.neuron.2020.10.008.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Raulin AC, et al. ApoE in alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener. 2022;17:72. https://doi.org/10.1186/s13024-022-00574-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu M, et al. Molecular mechanism and therapeutic strategy of bile acids in alzheimer’s disease from the emerging perspective of the microbiota–gut–brain axis. Biomed Pharmacother. 2024;178:117228. https://doi.org/10.1016/j.biopha.2024.117228.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abdalla MMI. Insulin resistance as the molecular link between diabetes and alzheimer’s disease. World J Diabetes. 2024;15:1430–47. https://doi.org/10.4239/wjd.v15.i7.1430.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arnold SE, et al. Brain insulin resistance in type 2 diabetes and alzheimer disease: concepts and conundrums. Nat Rev Neurol. 2018;14:168–81. https://doi.org/10.1038/nrneurol.2017.185.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kellar D, Craft S. Brain insulin resistance in alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 2020;19:758–66. https://doi.org/10.1016/S1474-4422(20)30231-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng M, et al. Research progress on the association of insulin resistance with type 2 diabetes mellitus and alzheimer’s disease. Metab Brain Dis. 2024;40:35. https://doi.org/10.1007/s11011-024-01472-y.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yin F. Lipid metabolism and alzheimer’s disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J. 2023;290:1420–53. https://doi.org/10.1111/febs.16344.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ooi KM, Vacy K, Boon WC. Fatty acids and beyond: age and alzheimer’s disease related changes in lipids reveal the neuro-nutraceutical potential of lipids in cognition. Neurochem Int. 2021;149:105143. https://doi.org/10.1016/j.neuint.2021.105143.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vauzour D. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev. 2012;2012(914273). https://doi.org/10.1155/2012/914273.

  • Phan HTT, et al. Polyphenols modulate alzheimer’s amyloid Beta aggregation in a Structure-Dependent manner. Nutrients. 2019;11:756. https://doi.org/10.3390/nu11040756.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Godos J, et al. Dietary (Poly)phenols and cognitive decline: A systematic review and Meta-Analysis of observational studies. Mol Nutr Food Res. 2024;68:e2300472. https://doi.org/10.1002/mnfr.202300472.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lorzadeh E, et al. The effect of anthocyanins on cognition: A systematic review and Meta-analysis of randomized clinical trial studies in cognitively impaired and healthy adults. Curr Nutr Rep. 2025;14:23. https://doi.org/10.1007/s13668-024-00595-z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laudani S, et al. Anthocyanin effects on vascular and endothelial health: evidence from clinical trials and role of gut microbiota metabolites. Antioxidants. 2023;12:1773. https://doi.org/10.3390/antiox12091773.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunt T, Pontifex MG, Vauzour D. (Poly)phenols and brain health– beyond their antioxidant capacity. FEBS Lett. 2024;598:2949–62. https://doi.org/10.1002/1873-3468.14988.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costabile G, et al. Plasma TMAO increase after healthy diets: results from 2 randomized controlled trials with dietary fish, polyphenols, and whole-grain cereals. Am J Clin Nutr. 2021;114:1342–50. https://doi.org/10.1093/ajcn/nqab188.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arrona Cardoza P, Spillane MB, Morales Marroquin E. Alzheimer’s disease and gut microbiota: does trimethylamine N-oxide (TMAO) play a role? Nutr Rev. 2021;80:271–81. https://doi.org/10.1093/nutrit/nuab022.

    Article 

    Google Scholar 

  • Thomas MS, Fernandez ML, Trimethylamine N. -Oxide (TMAO), diet and cardiovascular disease. Current Atherosclerosis Reports. 2021;23(4):12. https://doi.org/10.1007/s11883-021-00910-x.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu H, et al. Relationship between dietary fiber intake and the prognosis of amytrophic lateral sclerosis in Korea. Nutrients. 2020;12:3420. https://doi.org/10.3390/nu12113420.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pattle SB, et al. pTDP-43 aggregates accumulate in non‐central nervous system tissues prior to symptom onset in amyotrophic lateral sclerosis: a case series linking archival surgical biopsies with clinical phenotypic data. J Pathol Clin Res. 2023;9:44–55. https://doi.org/10.1002/cjp2.297.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elliott E, et al. Therapeutic targeting of proteostasis in amyotrophic lateral sclerosis—a systematic review and meta-analysis of preclinical research. Front Neurosci. 2020;14:511. https://doi.org/10.3389/fnins.2020.00511.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jack CR Jr., et al. NIA-AA research framework: toward a biological definition of alzheimer’s disease. Alzheimers Dement. 2018;14:535–62. https://doi.org/10.1016/j.jalz.2018.02.018.

    Article 
    PubMed 

    Google Scholar 

  • Jack CR, et al. Predicting amyloid PET and Tau PET stages with plasma biomarkers. Brain. 2023;146:2029–44. https://doi.org/10.1093/brain/awad042.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salvadó G, et al. Specific associations between plasma biomarkers and postmortem amyloid plaque and Tau tangle loads. EMBO Mol Med. 2023;15:e17123. https://doi.org/10.15252/emmm.202217123.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scarmeas N, Anastasiou CA, Yannakoulia M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018;17:1006–15. https://doi.org/10.1016/S1474-4422(18)30338-7.

    Article 
    PubMed 

    Google Scholar 

  • Zhou Y, et al. Fruit and vegetable consumption and cognitive disorders in older adults: A Meta-Analysis of observational studies. Front Nutr. 2022;9:871061. https://doi.org/10.3389/fnut.2022.871061.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Godos J, et al. Fish consumption, cognitive impairment and dementia: an updated dose-response meta-analysis of observational studies. Aging Clin Exp Res. 2024;36:171. https://doi.org/10.1007/s40520-024-02823-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lucerón-Lucas-Torres M, et al. Association between wine consumption and cognitive decline in older people: A systematic review and Meta-Analysis of longitudinal studies. Front Nutr. 2022;9:863059. https://doi.org/10.3389/fnut.2022.863059.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quan W, et al. Association of dietary meat consumption habits with neurodegenerative cognitive impairment: an updated systematic review and dose–response meta-analysis of 24 prospective cohort studies. Food Funct. 2022;13:12590–601. https://doi.org/10.1039/d2fo03168j.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prokopidis K, Giannos P, Ispoglou T, Witard OC, Isanejad M. Dietary Fiber intake is associated with cognitive function in older adults: data from the National health and nutrition examination survey. Am J Med. 2022;135:e257–62. https://doi.org/10.1016/j.amjmed.2022.03.022.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun W, Li S, Chen C, Lu Z, Zhang D. Dietary fiber intake is positively related with cognitive function in US older adults. J Funct Foods. 2022;90:104986. https://doi.org/10.1016/j.jff.2022.104986.

    Article 
    CAS 

    Google Scholar 

  • Yamagishi K, et al. Dietary fiber intake and risk of incident disabling dementia: the circulatory risk in communities study. Nutr Neurosci. 2023;26:148–55. https://doi.org/10.1080/1028415X.2022.2027592.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rajaram S, Jones J, Lee GJ. Plant-Based dietary patterns, plant foods, and Age-Related cognitive decline. Adv Nutr. 2019;10:S422–36. https://doi.org/10.1093/advances/nmz081.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fekete M, et al. The role of the mediterranean diet in reducing the risk of cognitive impairement, dementia, and alzheimer’s disease: a meta-analysis. GeroScience. 2025. https://doi.org/10.1007/s11357-024-01488-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Godos J, et al. Underrated aspects of a true mediterranean diet: Understanding traditional features for worldwide application of a Planeterranean diet. J Transl Med. 2024;22:294. https://doi.org/10.1186/s12967-024-05095-w.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernardi E, Visioli F. Fostering wellbeing and healthy lifestyles through conviviality and commensality: underappreciated benefits of the mediterranean diet. Nutr Res. 2024;126:46–57. https://doi.org/10.1016/j.nutres.2024.03.007.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maggi S, Rogoli D, Ecarnot F. Healthy aging in the context of the mediterranean diet–health-environment trilemma. Aging Health Res. 2021;1:100015. https://doi.org/10.1016/j.ahr.2021.100015.

    Article 

    Google Scholar 

  • van den Brink AC, Brouwer-Brolsma EM, Berendsen AAM, van de Rest O. The mediterranean, dietary approaches to stop hypertension (DASH), and Mediterranean-DASH intervention for neurodegenerative delay (MIND) diets are associated with less cognitive decline and a lower risk of alzheimer’s Disease-A review. Adv Nutr. 2019;10:1040–65. https://doi.org/10.1093/advances/nmz054.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morris MC, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015;11:1015–22. https://doi.org/10.1016/j.jalz.2015.04.011.

    Article 
    PubMed 

    Google Scholar 

  • Kheirouri S, Alizadeh M. MIND diet and cognitive performance in older adults: a systematic review. Crit Rev Food Sci Nutr. 2022;62:8059–77. https://doi.org/10.1080/10408398.2021.1925220.

    Article 
    PubMed 

    Google Scholar 

  • Chen H, et al. Association of the mediterranean dietary approaches to stop hypertension intervention for neurodegenerative delay (MIND) diet with the risk of dementia. JAMA Psychiatry. 2023;80:630–8. https://doi.org/10.1001/jamapsychiatry.2023.0800.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eyre HA, et al. Life-Course brain health as a determinant of Late-Life mental health: American association for geriatric psychiatry expert panel recommendations. Am J Geriatr Psychiatry. 2023;31:1017–31. https://doi.org/10.1016/j.jagp.2023.09.013.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marzola Patrícia, et al. Exploring the role of neuroplasticity in development, aging, and neurodegeneration. Brain Sci. 2023;13:1610. https://doi.org/10.3390/brainsci13121610.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chianese R, et al. Impact of dietary fats on brain functions. Curr Neuropharmacol. 2018;16:1059–85. https://doi.org/10.2174/1570159X15666171017102547.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bassetti CLA, et al. The Swiss brain health plan 2023–2033. Clin Transl Neurosci. 2023;7:38. https://doi.org/10.3390/ctn7040038.

    Article 

    Google Scholar 

  • Saleh RNM, Minihane AM, Fish. n-3 fatty acids, cognition and dementia risk: not just a fishy Tale. Proc Nutr Soc. 2022;81:27–40. https://doi.org/10.1017/S0029665121003700.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Suh SW, et al. The influence of n-3 polyunsaturated fatty acids on cognitive function in individuals without dementia: a systematic review and dose–response meta-analysis. BMC Med. 2024;22:109. https://doi.org/10.1186/s12916-024-03296-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu M, et al. Effects of folic acid supplementation on cognitive impairment: A meta-analysis of randomized controlled trials. J Evid Based Med. 2024;17:134–44. https://doi.org/10.1111/jebm.12588.

    Article 
    PubMed 

    Google Scholar 

  • Porter K, et al. Investigation of the role of riboflavin, vitamin B6 and MTHFR genotype as determinants of cognitive health in ageing. Proc Nutr Soc. 2016;75:E114. https://doi.org/10.1017/S0029665116001294.

    Article 

    Google Scholar 

  • de Jager CA, Oulhaj A, Jacoby R, Refsum H, Smith AD. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry. 2012;27:592–600. https://doi.org/10.1002/gps.2758.

    Article 
    PubMed 

    Google Scholar 

  • Rutjes AW, et al. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database Syst Rev. 2018;12(Cd011906). https://doi.org/10.1002/14651858.CD011906.pub2.

  • Marwaha S, Agarwal R, Tripathi M, Tripathi S. Unlocking the vitamin puzzle: investigating levels in people with alzheimer’s disease versus healthy controls through systematic review and network Meta-Analysis. J Hum Nutr Diet. 2025;38:e70007. https://doi.org/10.1111/jhn.70007.

    Article 
    PubMed 

    Google Scholar 

  • de Vries K, Medawar E, Korosi A, Witte AV. The effect of polyphenols on working and episodic memory in Non-pathological and pathological aging: A systematic review and Meta-Analysis. Front Nutr. 2021;8:720756. https://doi.org/10.3389/fnut.2021.720756.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen WY, et al. Effects of vitamin D supplementation on cognitive outcomes: A systematic review and Meta-Analysis. Neuropsychol Rev. 2024;34:568–80. https://doi.org/10.1007/s11065-023-09598-z.

    Article 
    PubMed 

    Google Scholar 

  • Zeevi D, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163:1079–94. https://doi.org/10.1016/j.cell.2015.11.001.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gutierrez L, et al. Effects of nutrition on cognitive function in adults with or without cognitive impairment: a systematic review of randomized controlled clinical trials. Nutrients. 2021;13:3728. https://doi.org/10.3390/nu13113728.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vauzour D, et al. Nutrition for the ageing brain: towards evidence for an optimal diet. Ageing Res Rev. 2017;35:222–40. https://doi.org/10.1016/j.arr.2016.09.010.

    Article 
    PubMed 

    Google Scholar 

  • Ebright B, et al. Effects of APOE4 on omega-3 brain metabolism across the lifespan. Trends Endocrin Met. 2024;35:745–57. https://doi.org/10.1016/j.tem.2024.03.003.

    Article 
    CAS 

    Google Scholar 

  • Liu X, et al. Dietary fats and the APOE-e4 risk allele in relation to cognitive decline: a longitudinal investigation in a biracial population sample. J Nutr Health Aging. 2024;28:100211. https://doi.org/10.1016/j.jnha.2024.100211.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dalile B, et al. Targeting cognitive resilience through prebiotics: A focused perspective. Adv Nutr. 2025;16:100343. https://doi.org/10.1016/j.advnut.2024.100343.

    Article 
    PubMed 

    Google Scholar 

  • Feng L, Li J, Yap KB, Kua EH, Ng TP, Vitamin. B-12, Apolipoprotein E genotype, and cognitive performance in community-living older adults: evidence of a gene-micronutrient interaction. Am J Clin Nutr. 2009;89:1263–8. https://doi.org/10.3945/ajcn.2008.26969.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bunce D, Kivipelto M, Wahlin Å, Apolipoprotein E. Vitamins, and cognitive function in older adults. J Gerontol B Psychol Sci Soc Sci. 2005;60:P41–8. https://doi.org/10.1093/geronb/60.1.P41.

    Article 
    PubMed 

    Google Scholar 

  • Weaver CM, Miller JW. Challenges in conducting clinical nutrition research. Nutr Rev. 2017;75:491–9. https://doi.org/10.1093/nutrit/nux026.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bailey RL. Overview of dietary assessment methods for measuring intakes of foods, beverages, and dietary supplements in research studies. Curr Opin Biotechnol. 2021;70:91–6. https://doi.org/10.1016/j.copbio.2021.02.007.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rocca WA, et al. Trends in the incidence and prevalence of alzheimer’s disease, dementia, and cognitive impairment in the united States. Alzheimers Dement. 2011;7:80–93. https://doi.org/10.1016/j.jalz.2010.11.002.

    Article 
    PubMed 

    Google Scholar 

  • Kolanowski A, Gilmore-Bykovskyi A, Hill N, Massimo L, Mogle J. Measurement challenges in research with individuals with cognitive impairment. Res Gerontol Nurs. 2019;12:7–15. https://doi.org/10.3928/19404921-20181212-06.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peters R, et al. Dementia risk reduction: why haven’t the Pharmacological risk reduction trials worked? An in-depth exploration of seven established risk factors. Alzheimers Dement (N Y). 2021;7:e12202. https://doi.org/10.1002/trc2.12202.

    Article 
    PubMed 

    Google Scholar 

  • Devranis P, et al. Mediterranean diet, ketogenic diet or MIND diet for aging populations with cognitive decline: A systematic review. Life (Basel). 2023;13. https://doi.org/10.3390/life13010173.

  • Jennings A, et al. Effectiveness and feasibility of a theory-informed intervention to improve mediterranean diet adherence, physical activity and cognition in older adults at risk of dementia: the MedEx-UK randomised controlled trial. BMC Med. 2024;22:600. https://doi.org/10.1186/s12916-024-03815-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doorduijn AS, et al. Nutritional status is associated with clinical progression in alzheimer’s disease: the NUDAD project. J Am Med Dir Assoc. 2023;24:638–e644631. https://doi.org/10.1016/j.jamda.2020.10.020.

    Article 
    PubMed 

    Google Scholar 

  • Ward NA, et al. Nutritional adequacy and protein intake in older adults at risk of undernutrition with subjective memory decline enrolled in the protein-Enriched mediterranean diet, with or without exercise (PROMED-EX) trial. Proceedings. 2023;91(205). https://doi.org/10.3390/proceedings2023091205.

  • Valls-Pedret C, et al. Mediterranean diet and Age-Related cognitive decline: A randomized clinical trial. JAMA Intern Med. 2015;175:1094–103. https://doi.org/10.1001/jamainternmed.2015.1668.

    Article 
    PubMed 

    Google Scholar 

  • Martínez-Lapiscina EH, et al. Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry. 2013;84:1318–25. https://doi.org/10.1136/jnnp-2012-304792.

    Article 
    PubMed 

    Google Scholar 

  • Knight A, et al. The mediterranean diet and cognitive function among healthy older adults in a 6-Month randomised controlled trial: the medley study. Nutrients. 2016;8. https://doi.org/10.3390/nu8090579.

  • Morris MC, et al. MIND diet associated with reduced incidence of alzheimer’s disease. Alzheimers Dement. 2015;11:1007–14. https://doi.org/10.1016/j.jalz.2014.11.009.

    Article 
    PubMed 

    Google Scholar 

  • Barnes LL, et al. Trial of the MIND diet for prevention of cognitive decline in older persons. N Engl J Med. 2023;389:602–11. https://doi.org/10.1056/NEJMoa2302368.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marengoni A, et al. The effect of a 2-Year intervention consisting of diet, physical exercise, cognitive training, and monitoring of vascular risk on chronic Morbidity—the FINGER randomized controlled trial. J Am Med Dir Assoc. 2018;19:355–e360351. https://doi.org/10.1016/j.jamda.2017.09.020.

    Article 
    PubMed 

    Google Scholar 

  • Kivipelto M, et al. A global approach to risk reduction and prevention of dementia. Alzheimers Dement. 2020;16:1078–94. World-Wide FINGERS Network.

    Article 
    PubMed 

    Google Scholar 

  • Stephenson BJK, Willett WC. Racial and ethnic heterogeneity in diets of low-income adult females in the united states: results from National health and nutrition examination surveys from 2011 to 2018. Am J Clin Nutr. 2023;117:625–34. https://doi.org/10.1016/j.ajcnut.2023.01.008.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu X, et al. Association of whole grain consumption and cognitive decline: an investigation from a community-based biracial cohort of older adults. Neurology. 2023;101:e2277–87. https://doi.org/10.1212/WNL.0000000000207938.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu X, et al. A healthy plant-based diet was associated with slower cognitive decline in African American older adults: a biracial community-based cohort. Am J Clin Nutr. 2022;116:875–86. https://doi.org/10.1093/ajcn/nqac204.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vincze L, et al. Cultural adaptation of health interventions including a nutrition component in Indigenous peoples: a systematic scoping review. Int J Equity Health. 2021;20:125. https://doi.org/10.1186/s12939-021-01462-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woodside J, Young IS, McKinley MC. Culturally adapting the mediterranean diet pattern–a way of promoting more ‘sustainable’dietary change? Br J Nutr. 2022;128:693–703. https://doi.org/10.1017/S0007114522001945.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pipingas A, et al. A mediterranean diet and walking intervention to reduce cognitive decline and dementia risk in independently living older australians: the medwalk randomized controlled trial experimental protocol, including COVID-19 related modifications and baseline characteristics. J Alzheimers Dis. 2023;96:409–27. https://doi.org/10.3233/JAD-230641.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hardman RJ, Kennedy G, Macpherson H, Scholey AB, Pipingas A. A randomised controlled trial investigating the effects of mediterranean diet and aerobic exercise on cognition in cognitively healthy older people living independently within aged care facilities: the lifestyle intervention in independent living aged care (LIILAC) study protocol [ACTRN12614001133628]. Nutr J. 2015;14:53. https://doi.org/10.1186/s12937-015-0042-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deckers K, et al. A multidomain lifestyle intervention to maintain optimal cognitive functioning in Dutch older adults—study design and baseline characteristics of the FINGER-NL randomized controlled trial. Alzheimers Res Ther. 2024;16:126. https://doi.org/10.1186/s13195-024-01495-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu X, et al. The Multi-domain lifestyle intervention for cognitive impairment in Community-Dwelling older adults in Hangzhou (The heritage Study): Study Design and Protocol. J Prev Alzheimers Dis. 2024;11:601–11. https://doi.org/10.14283/jpad.2024.59.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gardener SL, et al. The AUstralian multidomain approach to reduce dementia risk by protecting brain health with lifestyle intervention study (AU-ARROW): A study protocol for a single-blind, multi-site, randomized controlled trial. Alzheimers Dement (N Y). 2024;10:e12466. https://doi.org/10.1002/trc2.12466.

    Article 
    PubMed 

    Google Scholar 

  • Feldman HH, et al. Protocol for the brain health support program study of the Canadian therapeutic platform trial for multidomain interventions to prevent dementia (CAN-THUMBS UP): A prospective 12-Month intervention study. J Prev Alzheimers Dis. 2023;10:875–85. https://doi.org/10.14283/jpad.2023.65.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crivelli L, et al. Latin American initiative for lifestyle intervention to prevent cognitive decline (LatAm-FINGERS): study design and harmonization. Alzheimers Dement. 2023;19:4046–60. https://doi.org/10.1002/alz.13101.

    Article 
    PubMed 

    Google Scholar 

  • Xu X, et al. The SINgapore geriatric intervention study to reduce cognitive decline and physical frailty (SINGER): study design and protocol. J Prev Alzheimers Dis. 2022;9:40–8. https://doi.org/10.14283/jpad.2022.5.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baker LD, et al. Study design and methods: US study to protect brain health through lifestyle intervention to reduce risk (US POINTER). Alzheimers Dement. 2024;20:769–82. https://doi.org/10.1002/alz.13365.

    Article 
    PubMed 

    Google Scholar 

  • Conway J, Duggal NA. Ageing of the gut microbiome: potential influences on immune senescence and inflammageing. Ageing Res Rev. 2021;68:101323. https://doi.org/10.1016/j.arr.2021.101323.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fu J, et al. Dietary Fiber intake and gut microbiota in human health. Microorganisms. 2022;10:2507. https://doi.org/10.3390/microorganisms10122507.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grabrucker S, et al. Microbiota from alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis. Brain. 2023;146:4916–34. https://doi.org/10.1093/brain/awad303.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seo DO, Holtzman DM. Current Understanding of the alzheimer’s disease-associated Microbiome and therapeutic strategies. Exp Mol Med. 2024;56:86–94. https://doi.org/10.1038/s12276-023-01146-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luczynski P, et al. Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur J Neurosci. 2016;44:2654–66. https://doi.org/10.1111/ejn.13291.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Momtaz YA, Hamid TA, Ibrahim R. Gastritis May boost odds of dementia. Am J Alzheimers Dis Other Demen. 2014;29:452–6. https://doi.org/10.1177/1533317513518654.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hung CC, Chang CC, Huang CW, Nouchi R, Cheng CH. Gut microbiota in patients with alzheimer’s disease spectrum: a systematic review and meta-analysis. Aging. 2022;14:477–96. https://doi.org/10.18632/aging.203826.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol. 2019;16:461–78. https://doi.org/10.1038/s41575-019-0157-3.

    Article 
    PubMed 

    Google Scholar 

  • Connell E, et al. Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol Neurodegener. 2022;17:43. https://doi.org/10.1186/s13024-022-00548-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu L, et al. Altered gut microbial metabolites in amnestic mild cognitive impairment and alzheimer’s disease: signals in Host–Microbe interplay. Nutrients. 2021;13:228. https://doi.org/10.3390/nu13010228.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim MS, et al. Transfer of a healthy microbiota reduces amyloid and Tau pathology in an alzheimer’s disease animal model. Gut. 2020;69:283–94. https://doi.org/10.1136/gutjnl-2018-317431.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bello-Medina PC, et al. Chronic-Antibiotics induced gut microbiota dysbiosis rescues memory impairment and reduces β-Amyloid aggregation in a preclinical alzheimer’s disease model. Int J Mol Sci. 2022;23:8209. https://doi.org/10.3390/ijms23158209.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry. 2013;74:720–6. https://doi.org/10.1016/j.biopsych.2013.05.001.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fondell E, et al. Dietary fiber and amyotrophic lateral sclerosis: results from 5 large cohort studies. Am J Epidemiol. 2014;179(12). https://doi.org/10.1093/aje/kwu089.

  • Ordovas JM, Ferguson LR, Tai ES, Mathers JC. (2018). Personalised nutrition and health. BMJ, 361, bmj.k2173 (2018) https://doi.org/10.1136/bmj.k2173

  • Atalayer D, Astbury NM. Anorexia of aging and gut hormones. Aging Dis. 2013;4:264–75. https://doi.org/10.14336/AD.2013.0400264.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dagbasi A, et al. Augmented gut hormone response to feeding in older adults exhibiting low appetite. Appetite. 2024;201:107415. https://doi.org/10.1016/j.appet.2024.107415.

    Article 
    PubMed 

    Google Scholar 

  • Yu M, Yu B, Chen D. The effects of gut microbiota on appetite regulation and the underlying mechanisms. Gut Microbes. 2024;16:2414796. https://doi.org/10.1080/19490976.2024.2414796.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gibson GR, et al. Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepato. 2017;14(8):491–502. https://doi.org/10.1038/nrgastro.2017.75.

    Article 

    Google Scholar 

  • Mackenzie A. Our Right to Food Uist and Barra. Available at: Accessed 18 Feb 2025.

  • Shanks B. Factors influencing food choices among older adults in the rural Western USA. J Community Health. 2017;42:511–21. https://doi.org/10.1007/s10900-016-0283-6.

    Article 

    Google Scholar 

  • Psarikidou K, et al. Local food hubs in deprived areas: de-stigmatising food poverty? Local Environ. 2019;24:525–38. https://doi.org/10.1080/13549839.2019.1593952.

    Article 

    Google Scholar 

  • Marmot M. Social determinants of health inequalities. Lancet. 2005;365:1099–104. https://doi.org/10.1016/s0140-6736(05)71146-6.

    Article 
    PubMed 

    Google Scholar 

  • Roque M, Salva A, Vellas B. Malnutrition in community-dwelling adults with dementia (NutriAlz Trial). J Nutr Health Aging. 2013;17:295–9. https://doi.org/10.1007/s12603-012-0401-9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cipriani G, et al. Eating behaviors and dietary changes in patients with dementia. Am J Alzheimers Dis. 2016;31:706–16. https://doi.org/10.1177/1533317516673155.

    Article 

    Google Scholar 

  • Egan A, Andrews C, Lowit A. Dysphagia and mealtime difficulties in dementia: speech and Language therapists’ practices and perspectives. Int J Lang Comm Dis. 2020;55:777–92. https://doi.org/10.1111/1460-6984.12563.

    Article 

    Google Scholar 

  • Bell CL, et al. Prevalence and measures of nutritional compromise among nursing home patients: weight loss, low body mass index, malnutrition, and feeding dependency, a systematic review of the literature. J Am Med Dir Assoc. 2013;14:94–100. https://doi.org/10.1016/j.jamda.2012.10.012.

    Article 
    PubMed 

    Google Scholar 

  • Volkert D, et al. ESPEN guidelines on nutrition in dementia. Clin Nutr. 2015;34:1052–73. https://doi.org/10.1016/j.clnu.2015.09.004.

    Article 
    PubMed 

    Google Scholar 

  • Murphy JL, Holmes J, Cindy B. Nutrition and dementia care: developing an evidence-based model for nutritional care in nursing homes. BMC Geriatr. 2017;17:1–14. https://doi.org/10.1186/s12877-017-0443-2.

    Article 

    Google Scholar 

  • Palecek EJ, et al. Comfort feeding only: A proposal to bring clarity to Decision-Making regarding difficulty with eating for persons with advanced dementia. J Am Geriatr Soc. 2010;58:580–4. https://doi.org/10.1111/j.1532-5415.2010.02740.x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirkham JJ, Williamson P. Core outcome sets in medical research. BMJ Med. 2022;1:e000284. https://doi.org/10.1136/bmjmed-2022-000284.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Norwitz NG, et al. Precision nutrition for alzheimer’s prevention in ApoE4 carriers. Nutrients. 2021;13:1362. https://doi.org/10.3390/nu13041362.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • David LA, et al. Diet rapidly and reproducibly alters the human gut Microbiome. Nature. 2014;505:559–63. https://doi.org/10.1038/nature12820.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Clemente-Suárez VJ, et al. Personalizing nutrition strategies: bridging research and public health. J Pers Med. 2024;14:305. https://doi.org/10.3390/jpm14030305.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pini L, Wennberg A. Critical windows into a changing world: taking a life course and cohort view of alzheimer’s disease and related dementias risk. Int Psychogeriatr. 2022;34:311–3. https://doi.org/10.1017/S1041610221002751.

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *